
Solution of Ordinary Differential
Equations

UNIT 5 | [8 hrs]

Boundary Value Problem

In numerical methods, a boundary value problem (BVP) refers to a type of differential equation problem
that involves finding the solution to a differential equation subject to specified conditions at the
boundaries of the domain. Unlike initial value problems (IVPs) that require initial conditions at a single
point, boundary value problems require conditions at multiple points.

Shooting Method

#include <stdio.h>
#include <math.h>

#define MAX_ITERATIONS 1000
#define EPSILON 1e-6

// Define the function f(x, y, y')
double f(double x, double y, double yp) {

// Replace this with your ODE function, for example:
// return x * yp - y;
// or any other ODE you want to solve.

}

// Shooting method to solve the boundary value problem
double shooting_method(double a, double b, double A, double
B) {

double ya, yb, ypa, ypb, ym, yp, y;

// Initial guesses for the derivatives at the boundaries
double yp_low = 0.0;
double yp_high = 1.0;

// Bisection method to find the correct initial condition
for (int i = 0; i < MAX_ITERATIONS; i++) {

y = ya = A;
yp = ypa = yp_low;
double mid = (yp_low + yp_high) / 2.0;

// Numerical integration using Euler's method
double h = (b - a) / 1000;
for (double x = a; x < b; x += h) {

ypb = yp;
yp = yp + h * f(x, y, yp);
y = y + h * ypb;

}
yb = y;

C program for boundary value problem
using shooting method

// If the maximum number of iterations is reached, return an
error value

return NAN;
}

int main() {
// Define the boundary conditions and the interval [a, b]
double a = 0.0;
double b = 1.0;
double A = 0.0;
double B = 1.0;

// Solve the boundary value problem using the shooting
method

double yb = shooting_method(a, b, A, B);

if (!isnan(yb)) {
printf("The value of y(%lf) is approximately %lf\n", b, yb);

} else {
printf("Failed to converge to a solution.\n");

}

return 0;
}

// Check if the solution is close enough to the
boundary condition B

if (fabs(yb - B) < EPSILON) {
return yb;

}

// Adjust the interval for bisection
if (yb > B) {

yp_high = mid;
} else {

yp_low = mid;
}

}

